The U.S. Navy has committed to get half of its energy from renewable sources by the year 2020. One element of that strategy will be looking to extract energy from tides, currents and waves.

The University of Washington is helping to reach that goal with an $8 million, four-year contract from the Naval Facilities Engineering Command, or NAVFAC, to develop marine renewable energy for use at the Navy’s facilities worldwide.

The goal is to generate energy from the surrounding water at coastal bases, islands or overseas facilities in order to lower costs and increase reliability of the power supply. Forming a partnership with NAVFAC will allow the UW to develop tools for the Navy to predict and tap energy at its various marine locations.

“We are advancing existing technologies and concepts so they will perform well at naval facilities and help reach their energy targets,” said lead investigator Andrew Stewart, an engineer at the UW’s Applied Physics Laboratory. He will present information about the project Oct. 25 in Seattle at the Northwest National Marine Renewable Energy Center‘s annual meeting.

The team has a three-pronged strategy to develop marine energy at naval facilities, which differ from the prime spots now under investigation for commercial marine energy extraction.

During the past three months UW mechanical engineering faculty and graduate students have made 3-D printed prototypes of tidal turbines that they will test in the UW’s water channel and with computer modeling studies.

Next they will take the most promising designs and build larger-scale models, about 3 feet across, to test in moving water in 2016. One aim of the project is to develop fast, low-cost ways to evaluate the energy potential at prospective sites.

Read the full article here